Abstract

The velocity field level set method constructs the velocity field past velocity design variables and basis functions, and thus facilitates the use of general optimizers while still retaining the level set-based implicit topological representation. This newspaper incorporates the topological derivative concept into the velocity field level set method to enable automated nucleation of interior holes. In each design iteration, a specified book fraction of new holes is inserted at locations with smaller values of topological derivatives. Thus, the method provides a mode to directly change the structural topology during the boundary evolution using the velocity field based on the shape sensitivity. Compared with the original velocity field level set method, the electric current implementation can further accelerate the topological and shape evolution during the optimization process. More than importantly, the capability of hole nucleation eliminates the need of prescribing initial holes and thus alleviates the dependency of the optimized design on the initial pattern. Several numerical examples in both 2d and 3D design domains are presented to demonstrate the validity and efficiency of the proposed method.

References

1.

Sigmund

,

O.

, and

Maute

,

1000.

,

2013

, "

Topology Optimization Approaches: A Comparative Review

,"

Struct. Multidiscipl. Optim.

,

48

(

6

), pp.

1031

1055

.

2.

Deaton

,

J. D.

, and

Grandhi

,

R. V.

,

2014

, "

A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000

,"

Struct. Multidiscipl. Optim.

,

49

(

1

), pp.

1

38

.

3.

Wang

,

Chiliad. Y.

,

Wang

,

X.

, and

Guo

,

D.

,

2003

, "

A Level Set Method for Structural Topology Optimization

,"

Comput. Methods Appl. Mech. Eng.

,

192

(

1–2

), pp.

227

246

.

4.

Allaire

,

G.

,

Jouve

,

F.

, and

Toader

,

A. M.

,

2004

, "

Structural Optimization Using Sensitivity Analysis and a Level-Gear up Method

,"

J. Comput. Phys.

,

194

(

1

), pp.

363

393

.

5.

Luo

,

Z.

,

2013

, "

A Short Survey: Topological Shape Optimization of Structures Using Level Set Methods

,"

J. Appl. Mech. Eng.

,

02

(

03

), p.

123

.

6.

Wang

,

Y.

, and

Kang

,

Z.

,

2018

, "

A Level Ready Method for Shape and Topology Optimization of Coated Structures

,"

Comput. Methods Appl. Mech. Eng.

,

329

(

1

), pp.

553

574

.

7.

Wang

,

Y.

,

Gao

,

J.

, and

Kang

,

Z.

,

2018

, "

Level Set-Based Topology Optimization With Overhang Constraint: Towards Support-Free Additive Manufacturing

,"

Comput. Methods Appl. Mech. Eng.

,

339

(

ane

), pp.

591

614

.

8.

Van Dijk

,

N. P.

,

Maute

,

K.

,

Langelaar

,

Grand.

, and

Van Keulen

,

F.

,

2013

, "

Level-Set Methods for Structural Topology Optimization: A Review

,"

Struct. Multidiscipl. Optim.

,

48

(

iii

), pp.

437

472

.

nine.

Mei

,

Y.

, and

Wang

,

X.

,

2004

, "

A Level Set Method for Structural Topology Optimization and Its Applications

,"

Adv. Eng. Software

,

35

(

7

), pp.

415

441

.

10.

Luo

,

J.

,

Luo

,

Z.

,

Chen

,

50.

,

Tong

,

50.

, and

Wang

,

M. Y.

,

2008

, "

A Semi-Implicit Level Set Method for Structural Shape and Topology Optimization

,"

J. Comput. Phys.

,

227

(

xi

), pp.

5561

5581

.

11.

Martínez-Frutos

,

J.

,

Allaire

,

G.

,

Dapogny

,

C.

, and

Periago

,

F.

,

2019

, "

Structural Optimization Under Internal Porosity Constraints Using Topological Derivatives

,"

Comput. Methods Appl. Mech. Eng.

,

345

(

i

), pp.

ane

25

.

12.

Dunning

,

P. D.

, and

Kim

,

H. A.

,

2015

, "

Introducing the Sequential Linear Programming Level-Set Method for Topology Optimization

,"

Struct. Multidiscipl. Optim.

,

51

(

3

), pp.

631

643

.

13.

Eschenauer

,

H. A.

,

Kobelev

,

V. V.

, and

Schumacher

,

A.

,

1994

, "

Bubble Method for Topology and Shape Optimization of Structures

,"

Struct. Optim.

,

8

(

1

), pp.

42

51

.

14.

Schumacher

,

A.

,

1995

, "

Topologieoptimierung von Bauteilstrukturen Unter Verwendung von Lochpositionierungskriterien

," Ph.D. thesis,

Universität-Gesamthochschule Siegen

,

Deutschland

.

15.

Sokolowski

,

J.

, and

Zochowski

,

A.

,

1999

, "

On the Topological Derivative in Shape Optimization

,"

SIAM J. Control Optim.

,

37

(

four

), pp.

1251

1272

.

sixteen.

Céa

,

J.

,

Garreau

,

South.

,

Guillaume

,

P.

, and

Masmoudi

,

1000.

,

2000

, "

The Shape and Topological Optimizations Connection

,"

Comput. Methods Appl. Mech. Eng.

,

188

(

four

), pp.

713

726

.

17.

Novotny

,

A. A.

,

Feijóo

,

R. A.

,

Taroco

,

East.

, and

Padra

,

C.

,

2003

, "

Topological Sensitivity Assay

,"

Comput. Methods Appl. Mech. Eng.

,

192

(

7–8

), pp.

803

829

.

eighteen.

Suresh

,

K.

,

2010

, "

A 199-Line Matlab Code for Pareto-Optimal Tracing in Topology Optimization

,"

Struct. Multidiscipl. Optim.

,

42

(

5

), pp.

665

679

.

xix.

Burger

,

Chiliad.

,

Hackl

,

B.

, and

Ring

,

Due west.

,

2004

, "

Incorporating Topological Derivatives Into Level Fix Methods

,"

J. Comput. Phys.

,

194

(

1

), pp.

344

362

.

20.

Challis

,

V. J.

,

2010

, "

A Detached Level-Prepare Topology Optimization Lawmaking Written in Matlab

,"

Struct. Multidiscipl. Optim.

,

41

(

3

), pp.

453

464

.

21.

Allaire

,

G.

,

De Gournay

,

F.

,

Jouve

,

F.

, and

Toader

,

A. M.

,

2005

, "

Structural Optimization Using Topological and Shape Sensitivity Via a Level Set Method

,"

Control Cybern.

,

34

(

1

), pp.

59

81

.

22.

Cai

,

S.

, and

Zhang

,

W.

,

2020

, "

An Adaptive Bubble Method for Structural Shape and Topology Optimization

,"

Comput. Methods Appl. Mech. Eng.

,

360

(

1

), p.

112778

.

23.

Chen

,

J.

,

Shapiro

,

Five.

,

Suresh

,

K.

, and

Tsukanov

,

I.

,

2007

, "

Shape Optimization With Topological Changes and Parametric Command

,"

Int. J. Numer. Methods Eng.

,

71

(

3

), pp.

313

346

.

24.

Luo

,

Z.

,

Wang

,

One thousand. Y.

,

Wang

,

S.

, and

Wei

,

P.

,

2008

, "

A Level Prepare-Based Parameterization Method for Structural Shape and Topology Optimization

,"

Int. J. Numer. Methods Eng.

,

76

(

1

), pp.

1

26

.

25.

Jiang

,

Fifty.

,

Guo

,

Y.

,

Chen

,

South.

,

Wei

,

P.

,

Lei

,

N.

, and

Gu

,

X. D.

,

2019

, "

Concurrent Optimization of Structural Topology and Infill Backdrop With a CBF-Based Level Set Method

,"

Front. Mech. Eng.

,

14

(

2

), pp.

171

189

.

26.

Wei

,

P.

,

Yang

,

Y.

,

Chen

,

South.

, and

Wang

,

Thousand. Y.

,

2021

, "

A Report on Basis Functions of the Parameterized Level Set Method for Topology Optimization of Continuums

,"

ASME J. Mech. Des.

,

143

(

4

), p.

041701

.

27.

Li

,

X.

,

Gao

,

L.

,

Zhou

,

Y.

, and

Li

,

H.

,

2021

, "

A Hybrid Level Set up Method for the Integrated Optimization of Structural Topology and Multicomponent Layout

,"

Int. J. Numer. Methods Eng.

,

122

(

eleven

), pp.

2802

2828

.

28.

Dunning

,

P. D.

, and

Kim

,

H. A.

,

2013

, "

A New Hole Insertion Method for Level Ready Based Structural Topology Optimization

,"

Int. J. Numer. Methods Eng.

,

93

(

1

), pp.

118

134

.

29.

Yamada

,

T.

,

Izui

,

1000.

,

Nishiwaki

,

S.

, and

Takezawa

,

A.

,

2010

, "

A Topology Optimization Method Based on the Level Fix Method Incorporating a Fictitious Interface Energy

,"

Comput. Methods Appl. Mech. Eng.

,

199

(

45–48

), pp.

2876

2891

.

xxx.

Xia

,

Q.

,

Shi

,

T.

, and

Xia

,

50.

,

2019

, "

Stable Hole Nucleation in Level Fix Based Topology Optimization by Using the Material Removal Scheme of BESO

,"

Comput. Methods Appl. Mech. Eng.

,

343

(

one

), pp.

438

452

.

31.

Xia

,

Q.

, and

Shi

,

T.

,

2019

, "

Generalized Hole Nucleation Through BESO for the Level Set Based Topology Optimization of Multi-material Structures

,"

Comput. Methods Appl. Mech. Eng.

,

355

(

one

), pp.

216

233

.

32.

Takezawa

,

A.

,

Nishiwaki

,

South.

, and

Kitamura

,

M.

,

2010

, "

Shape and Topology Optimization Based on the Phase Field Method and Sensitivity Analysis

,"

J. Comput. Phys.

,

229

(

seven

), pp.

2697

2718

.

33.

Xia

,

50.

,

Xia

,

Q.

,

Huang

,

10.

, and

Xie

,

Y. M.

,

2018

, "

Bi-Directional Evolutionary Structural Optimization on Advanced Structures and Materials: A Comprehensive Review

,"

Arch. Comput. Meth. Eng.

,

25

(

ii

), pp.

437

478

.

34.

Wang

,

Y.

, and

Kang

,

Z.

,

2018

, "

A Velocity Field Level Prepare Method for Shape and Topology Optimization

,"

Int. J. Numer. Methods Eng.

,

115

(

eleven

), pp.

1315

1336

.

35.

Wang

,

Y.

, and

Kang

,

Z.

,

2021

, "

MATLAB Implementations of Velocity Field Level Set Method for Topology Optimization: An fourscore-Line Code for 2d and a 100-Line Code for 3D Problems

,"

Struct. Multidiscip. Optim.

,

64

(

6

), pp.

4325

4342

.

36.

Wang

,

Y.

, and

Kang

,

Z.

,

2019

, "

Concurrent 2-Scale Topological Design of Multiple Unit Cells and Structure Using Combined Velocity Field Level Set and Density Model

,"

Comput. Methods Appl. Mech. Eng.

,

347

(

1

), pp.

340

364

.

37.

Osher

,

Due south.

, and

Fedkiw

,

R.

,

2003

,

Level Ready Method and Dynamic Implicit Surfaces

,

Springer

,

Berlin

.

38.

Wang

,

Y.

,

Kang

,

Z.

, and

Liu

,

P.

,

2019

, "

Velocity Field Level-set Method for Topological Shape Optimization Using Freely Distributed Blueprint Variables

,"

Int. J. Numer. Methods Eng.

,

120

(

13

), pp.

1411

1427

.

39.

Svanberg

,

K.

,

1987

, "

The Method of Moving Asymptotes-a New Method for Structural Optimization

,"

Int. J. Numer. Methods Eng.

,

24

(

ii

), pp.

359

373

.

40.

Novotny

,

A. A.

,

Feijóo

,

R. A.

,

Taroco

,

Eastward.

,

Masmoudi

,

M.

, and

Padra

,

C.

,

2005

, "

Topological Sensitivity Analysis for a Nonlinear Instance: The p-Poisson Trouble

,"

6th Globe Congress on Structural and Multidisciplinary Optimization

,

Rio de Janeiro, Brazil

,

May thirty–June 3

.

41.

Pereira

,

C. E. L

, and

Bittencourt

,

Chiliad. Fifty.

,

2008

, "

Topological Sensitivity Analysis in Large Deformation Problems

,"

Struct. Multidiscip. Optim.

,

37

(

2

), pp.

149

163

.

42.

Wang

,

Y.

,

Luo

,

Y.

, and

Kang

,

Z.

,

2021

, "

Integrated Blueprint Optimization of Structural Topology and Heat Source Layout

,"

Int. J. Heat Mass Transf.

,

169

(

ane

), p.

120943

.

Yous do not currently have access to this content.